A Genetic Local Search Algorithm for Sequencing Problem on a Synchronous Flow Line
نویسنده
چکیده
Genetic Algorithms (GAs) have been applied on a variety of combinatorial optimization problems with high success. GAs have also become increasingly popular as a means of solving flowshop sequencing problems. The synchronous line sequencing (SLS) problem is one of sequencing jobs in a synchronous flow line with the objective of minimizing makespan. In this study, I apply two genetic local search (GLS) algorithms, which is a hybrid algorithm of a local search (LS) and a genetic algorithm (GA), to the problem environment. I also use a simple construction heuristic to obtain one of the members of the initial population, the others are generated randomly. I compare the performance of GLS algorithms with the optimum results which was obtained from a branch and bound algorithm with tight upper and lower bounding procedures.
منابع مشابه
A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملمدل حل مبتنی بر جستجوگر محلی ژنتیک برای مساله زمان بندی استقرار کارگاهی تعمیم یافته با زمانهای عملیات قابل کنترل
Although incorporating complexities and flexibilities of real world manufacturing systems into classic scheduling problems results in problems with greater complexity, it has immense theoretical and practical importance due to its impressive effect on system performance. In this research, three basic assumptions of a job shop scheduling problem have been revised to develop a model with three ty...
متن کاملFlow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کامل